114 research outputs found

    Design of a 30 GHz bragg reflector for a Raman FEL

    Get PDF
    A design of a Bragg reflector for a Raman FEL is described. It is shown that mode conversion occurs whenever the axial wavenumbers of the two modes fulfil the Bragg condition. With a constant ripple of the corrugation it is shown that the reflected radiation also contains higher order modes, assuming that the incident radiation consists only of a TE11 mode. The mode purity can be increased by increasing the length of the reflector at the expense of a smaller reflection bandwidth. A more flexible method is by applying a Hamming window to the corrugation of the reflector. Contributions of other modes to the reflected radiation can in that case be neglected. The reflector will be installed in a Raman laser to be able to compare the amplifier with the oscillator configuration. Therefore some preliminary results are also presented about the start-up of the Raman laser

    Recent Updates to the Optical Propagation Code OPC

    Get PDF
    In order to understand and design free-electron lasers (FELs), simulation codes modeling the interaction of electrons with a co-propagating optical field in the magnetic field of an undulator are essential. However, propagation of the optical field outside the undulator is equally important for evaluation of the optical field at the location of the application or to model FEL oscillators. The optical propagation code OPC provides such capabilities and can interface with FEL gain codes like GENESIS 1.3, MEDUSA and MINERVA. Here we present recent additions and modifications to the code that improves the speed of the code and extends the modeling capabilities. These include amongst other, inline diagnostics that results in considerable faster runtimes, the ability to convert from free-space modes to guided modes (currently only cylindrical waveguides), and the possibility to determine the spectrum at each transverse location. The latter opens the possibility to include dispersion in the optical propagation

    Liner radius fluctuations in a high-gain Cherenkov free-electron laser

    Get PDF
    Phase shifts in the propagating electromagnetic field of a Cherenkov free-electron laser (CFEL) can affect its gain. The phase velocity of an electromagnetic wave varies, for example, when the lined waveguide is inhomogeneous along its length. In this paper, we study quantitatively the saturated power of a particular CFEL at both weak and strong electron-beam pumping when the inner radius of the liner contains fluctuations along the waveguide. We show that the gain bandwidth of the CFEL is substantially broadened when the CFEL is pumped with a high-current beam. We also show that the design of a CFEL needs to include optimization with respect to sensitivity to liner fluctuations, especially for weakly pumped CFELs, that is, CFELs that use a low-current electron-beam density. This optimization can be relaxed for more strongly pumped CFELs

    Design of a Resonator for the CSU THz FEL

    Get PDF
    A 6-MeV L-band linac will be used to drive a planar, fixed gap, 2.5-cm period, hybrid undulator with parabolic pole faces. Consequently, this system is capable of generating wavelengths from 160 to 600 μm. In this paper we discuss the design of an optical resonator for this system. The resonator uses hole-coupled mirrors to allow for a straight electron beam line. The Rayleigh length, the position of the waist of the cold-cavity mode and the hole radii will be investigated to optimize the performance of the FEL

    The effect of a Bragg reflector on the spectral stability of the Twente Raman free electron laser

    Get PDF
    The spectral distribution of the Twente Raman FEL has been studied as a function of the interaction length for an amplifier configuration. A stable spectrum was found for the minimum required interaction length necessary for the RF signal to be detected. Large variations in total emitted energy are observed however. With increasing interaction length the spectral distribution not only evolves but deviations are also observed, i.e. for some shots distributions are found which do not conform to the average distribution. For even longer interaction lengths the spectra can be grouped in a few different patterns. The influence of the feedback on the spectral distribution has been studied by changing the configuration to an oscillator using a Bragg reflector. For all settings investigated, the oscillator showed a more stable spectrum, i.e., less spread in total emitted energy as well as less spread in spectral distribution. For some settings operation on a single frequency in the Ka band was observed

    FEL-Oscillator Simulations with Genesis 1.3

    Get PDF
    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral, which in combination with Genesis 1.3 can be used to perform either steady-state or time-dependent FEL oscillator simulations. A flexible scripting interface is used both to describe the optical resonator and to control the codes for propagation and amplification. OPC enables modeling of complex resonator designs that may include hard-edge elements (apertures) or hole-coupled mirrors with arbitrary\ud shapes. Some capabilities of OPC are illustrated using the FELIX system as an example

    Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides

    Get PDF
    We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si 3 N 4 waveguides with a standard core cross section of 4.4× 0.03 μ m 2 size, buried 8 μ m deep in a SiO 2 cladding we compare surface acoustic wave generation in various different geometries via a piezo-active, lead zirconate titanate film placed on top of the surface and driven via an interdigitized transducer (IDT). Using numerical solutions of the acoustic and optical wave equations, we determine the strain distribution of the SAW under resonant excitation. From the overlap of the acoustic strain field with the optical mode field we calculate and maximize the attainable amplitude of index modulation in the waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum shift in relative effective refractive index of 0.7x10 −3 was obtained for TE polarized light, using an IDT period of 30 - 35 μ m, a film thickness of 2.5 - 3.5 μ m, and an IDT voltage of 10 V. For these parameters, the resonant frequency is in the range 70 - 85 MHz. The maximum shift increases to 1.2x10 −3 , with a corresponding resonant frequency of 87 MHz, when the height of the cladding above the core is reduced to 3 μ m. The relative index change is about 300-times higher than in previous work based on non-resonant proximity piezo-actuation, and the modulation frequency is about 200-times higher. Exploiting the maximum relative index change of 1.2× 10 −3 in a low-loss balanced Mach-Zehnder modulator should allow full-contrast modulation in devices as short as 120 μ m (half-wave voltage length product = 0.24 Vcm)

    A 3D Model of the 4GLS VUV-FEL Conceptual Design Including Improved Modelling of the Optical Cavity

    Get PDF
    The Conceptual Design Report for the 4th Generation Light Source (4GLS) at Daresbury Laboratory in the UK was published in Spring 2006. The proposal includes a low-Q cavity (also called a regenerative amplifier) FEL to generate variably-polarised, temporally-coherent radiation in the photon energy range 3-10eV. A new simulation code has been developed that incorporates the 3D FEL code Genesis 1.3 and which simulates in 3D the optical components and radiation propagation within the non-amplifying sections of an optical cavity*. This code is used to estimate the optimum low-Q cavity design and characterise the output from the 4GLS VUV-FEL
    • …
    corecore